REFERENCES (with notes and quotes)

Understanding of fetal circulation, respiration, and neonatal transition

1. Harvey, William. *Anatomical exercitations concerning the generation of living creatures to which are added particular discourses of births and of conceptions, &c.* London: Printed by James Young, for Octavian Pulleyn, and are to be sold at his shop at the sign of the Rose in St. Pauls Church-yard, 1653. From Early English Books Online, http://eebo.chadwyck.com/

"Moreover, it is a sure way to know whether the Infant that sticketh in the birth be alive, or not, by the pulsation of the Vmbilical Arteries. But most certain it is, that those Arteries are not moved by the virtue or operation of the Mothers, but of his own proper Heart: For they keep a distinct time and pawze, from the Mothers pulse: which is easily experimented, if you lay one hand upon the Mothers wrest, and the other on the Infants Navel-string. Nay in a Casarean Section, when the Embryo's have been yet involved in the membrane called Chorion, I have oftentimes found (even when the Mother was extinct, and stiffe almost with cold) the Vmbilical Arteries beating, and the Foetus himself lusty."

"Can it possibly be supposed that this important event, this great change which takes place in the lungs, the heart, and the liver, from the state of a foetus, kept alive by the umbilical cord, to that state when life cannot be carried on without respiration, whereby the lungs must be fully expanded with air, and the whole mass of blood instead of one fourth part be circulated through them, the ductus venosus, foramen ovale, ductus arteriosus, and the umbilical arteries and vein must all be closed, and the mode of circulation in the principal vessels entirely altered - Is it possible that this wonderful alteration in the human machine should be properly brought about in one instant of time, and at the will of a by-stander?" [p45]

"The placenta is an organ for the purpose of giving due oxygenation to the blood of the fetus; which is more necessary, or at least more frequently necessary, than even the supply of food." [p350]

Pulmonary oxygenation effects closure of the umbilical arteries

"Oxygeination of the newborn's blood after establishment of its pulmonary respiration is the main factor in bringing about closure of the umbilical arteries…"
Brain System Impairments in Autism

…Experience since long ago has taught some clinicians that ligation of the cord is not paramount in the care of the stump." [1, p398]

Transfer of placental blood to the alveolar capillaries opens the lungs

Jäykkä demonstrated that expansion of the lungs results from filling of the capillary bed surrounding the alveoli. Ventilation of non-inflated lungs led to patchy non-uniform opening of the alveoli. Respiration is exchange of carbon dioxide for oxygen via hemoglobin in the lungs or placenta, and of oxygen for carbon dioxide in other organs. Pulmonary respiration cannot begin until blood (laden with carbon dioxide) fills the capillaries that supply the alveoli. An initial exhalation may precede the first breath.

In earlier research (published in German and Czech journals) Stembera et al. found that the placenta begins to separate from the wall of the uterus at about 2 minutes after birth, and that the concentration of oxygen in the umbilical arteries begins to decline only 60 to 90 seconds after the first breath. They thus concluded:

"After inclusion of all of our previous data with those in the present communication, it would appear that the first 100 seconds after birth is a period during which the flow and metabolic conditions in the maternal-placental-fetal system continue essentially in a manner similar to that in utero" [p573]

Transfer of blood from placenta to lungs with onset of pulmonary respiration

Redmond et al. measured residual placental blood as an estimate of placental transfusion before and after onset of respiration. In 55 infants, the cord was clamped before onset of respiration, and in 97 after the onset of respiration. The plot of residual blood to onset of respiration from the paper by Redmond et al. shows a dramatic drop in residual blood in cases where the cord was clamped after onset of respiration.

"Our data, obtained from normal uncomplicated pregnancies, clearly demonstrated that a placental transfusion is an inevitable physiological consequence of initial pulmonary expansion, over which obstetricians and paediatricians have little, if any, control.”

“The tendency for some obstetricians to deliver the head, aspirate the nose and mouth, and slowly extract the remainder of the baby probably aids the transmission of placental blood to the infant." [p284]

"The transfer of respiratory function from the placenta to the lungs at birth stands out as the most dramatic, complex and important event in our lives. How does this transfer take place? We know that there is often a delay after delivery before breathing commences and that a further interval must pass before pulmonary respiration meets the requirements of the newborn infant [2]. What of the placenta during this time? Does its respiratory function cease at the moment of delivery, or is it maintained until the lungs have assumed their new responsibility?" [p607]

Mercer and Skovgaard brought attention to Jäykkä’s research in their analysis of blood volume redistribution required by all body organs following birth.

“The hypothesis proposed is that a successful neonatal transition is dependent upon a newborn having an adequate blood volume to recruit the lung for respiratory function through capillary erection and an adequate red cell volume to provide enough oxygen delivery to stimulate and maintain respiration.” [p59]

Current delivery room protocol – textbook instruction adopted in the 1980s

"Apgar scores are recorded at 1 minute and again at 5 minutes, timing the observations accurately (see chapter 43, Table 43.1). Also the time to first breath and time to the establishment of regular respirations are recorded."

"Permanent cord clamps or ligatures (Figure 26.27) or special bands are applied to the umbilical cord as soon as possible after birth..." [p470]

"...As soon as possible after suctioning, the cord is clamped..."

"... consequences of a significant shift [of blood volume] toward the infant include polycythemia, circulatory volume overload, and hyperbilirubinemia, and these generally outweigh any potential advantage of augmenting the infant's iron reserve..." [p301, citing Cunningham et al., Williams Obstetrics, 18th ed.]

"Although the theoretical risk of circulatory overloading from gross hypervolemia is formidable, especially in preterm and growth-retarded
infants, addition of placental blood to the otherwise normal infant's circulation ordinarily does not cause difficulty. Our policy is to clamp the cord after first thoroughly clearing the infant's airway, all of which usually takes about 30 seconds."

(1) Doubly clamp cord segment (10-20 cm) immediately after birth in all deliveries, and place on table.

(2) pH and acid-base determinations indicated for:
 - prematurity
 - meconium
 - nuchal cord
 - low Apgar scores (< 7 at 5 minutes)
 - abnormal antepartum fetal heart tracing
 - any serious problem with delivery or neonate's condition

(3) If unable to obtain cord specimen, aspirate artery on chorionic surface of placenta

(4) Discard cord segment if 5 minute Apgar score satisfactory and newborn stable/vigorous

"... Our policy is to clamp the cord after first thoroughly clearing the airway, all of which usually requires about 30 seconds."

“Immediately after the delivery of the neonate, a segment of umbilical cord should be double-clamped, divided, and placed on the delivery table pending assignment of the 5-minute Apgar score. Values from the umbilical cord artery provide the most accurate information regarding fetal and newborn acid-base status. A clamped segment of cord is stable for pH and blood gas assessment for at least 60 minutes, and a cord blood sample in a syringe flushed with heparin is stable for up to 60 minutes (13, 14). If the 5-minute Apgar score is satisfactory and the infant appears stable and vigorous, the segment of umbilical cord can be discarded.” [p1321]

Statistics for respiratory depression at birth

“During the 7-year period 1985–91, the incidences of low Apgar score (< 7 at 5 min), pure birth asphyxia and birth asphyxia with HIE in this population were 6.9, 5.4 and 1.8 per 1000 live born infants, respectively.” [p911]

“Overall, the rate of respiratory depression at birth was low (6.2/1000) and the rate of the serious manifestation of seizures was less than 1 in 1000.” [p772]

Autism prevalence

“Sixty-four children (85.9% boys) were diagnosed with pervasive developmental disorders. The prevalence was 58.7 per 10,000” [p1133]

“Cases from the first two study years (2000 and 2002) have been combined for this analysis. RESULTS: A total of 296 children met criteria for ASD, yielding a prevalence of 6.2 per 1000.” [2007, p748]

Cases from South Carolina… surveillance of 47,726 children who are 8 years of age… 295 children met criteria for ASD… “CONCLUSIONS: Results indicate that ASDs affect 1 in 162 children 8 years of age in South Carolina.” [2008, abstract]

20. Center for Disease Control updates [http://www.cdc.gov/ncbddd/autism/]

“Autism 1 in 150: The prevalence of autism among 8-year-olds in the U.S. Autism rates have not declined, even though thimerosal, which some believe contributes to the disease, was removed from vaccines in 2001.” [p38]

Hemoglobin

"Primitive organisms rely on diffusion through their environmental media to provide the oxygen needed for their metabolism and to remove the carbon dioxide produced. The active metabolism of mammalian tissues remote from the atmosphere is possible because of a mechanism which provides constant delivery of oxygen and removal of carbon dioxide. The magnitude of this task may be appreciated from the fact that a man oxidizing 3000 Cal. of mixed food
per day uses about 600 liters of oxygen (27 moles) and produces about 480 liters of carbon dioxide (22 moles).

Through the action of hemoglobin, oxygen is abstracted from the air, carried within a few seconds to the most distant parts of the body, and delivered to the tissues at a pressure only slightly less than that which it existed in the atmosphere.

The CO2 produced daily by the tissues becomes H2CO3, an acid, in an amount equivalent to 2 liters of concentrated hydrochloric acid; yet all this acid normally pours from the tissues, through the blood, and out of the lungs with a change in the pH of blood of no more than few hundredths of a pH unit. " [p758 – Chapter 32. Chemistry of Respiration]

“The biological function of the CO2 effect was clearly recognized by Bohr and colleagues: CO2 entering the tissue capillaries promotes the release of oxygen by decreasing the blood O2 affinity, and in the lung capillaries the efflux of CO2 to the alveoli increases blood O2 affinity and improves Hb O2 binding.” [p216]

Introduction of the obstetric clamp (1912)

"I desire to present to the profession a little device for use on the cord instead of the usual ligature." [p85].

Wechsler reported that on a recent visit to Vienna, he had witnessed the method of clamping and dressing without ligature in the Schauta Clinic. The clamp is pictured and noted to be smaller than the "ordinary Hemostat" used in Vienna. Rationale for use of a clamp was that it lessens the danger of infection. Its use was described as follows:

"Clamping the cord is accomplished in the following way:
1. Wait until pulsation has ceased;
2. Clamp cord about one inch from umbilicus;
3. Cut cord even with clamp.

The infant is then removed by the nurses and the clamp allowed to remain on stump of cord for fifteen minutes, or about the time the placenta has been expelled then the clamp is ready to taken off." [p86]

Tying of the cord too soon has been a longstanding problem as was recognized by White (1773) above, and Erasmus Darwin (grandfather of Charles) who stated:
"Another thing very injurious to the child, is the tying and cutting of the navel string too soon; which should always be left till the child has not only repeatedly breathed but till all pulsation in the cord ceases. As otherwise the child is much weaker than it ought to be, a portion of the blood being left in the placenta, which ought to have been in the child.” [p321]

History of the current protocol for clamping the umbilical cord

Traditional instruction on ligation of the cord (to the early 20th century)

"The head is born: perhaps the cord is turned once, or even more than once around the child’s neck, which it encircles so closely as to strangulate it. Let the loop be loosened to enable it to be cast off over the head. … [or] by slipping it down over the shoulders. … If this seems impossible, it should be left alone; and in the great majority of cases, it will not prevent the birth from taking place, after which the cord may be cast off. … Should the child be detained by the tightness of the cord, as does rarely happen, … the funis may be cut … Under such a necessity as this, a due respect for one’s own reputation should induce him to explain, to the bystanders, the reasons which rendered so considerable a departure from the ordinary practice so indispensable. I have known an accoucheur’s capability called harshly into question upon this very point of practice. I have never felt it necessary to do it but once. … The cord should not be cut until the pulsations have ceased.”

“After birth of the child, the pulsation ceases in about fifteen or twenty minutes, and that portion of the cord which remains attached to the umbilicus dies, and gradually withers, until it falls off, in the majority of cases, on the fifth or sixth day.” [p 91 #181 The umbilical cord, funis, or navel string].

“…in ordinary cases, if we find that the cord is twisted around the neck, all we need do is to draw down more of the cord, and either slip the lop over the head or shoulders. If we cannot do this, we must loosen the cord as much as we can, so as to prevent the strangulation of its vessels, and wait for the uterus to expel the child.” [p 131]

“If the child be healthy, and not have suffered from pressure, &c. it will cry as soon as it is born, and when respiration is established, it may be separated from its mother…” [p 132]

“…the circulation existing between it [the child] and the placenta is observed to continue for some time… pulsations in the arteries gradually cease, commencing at their placental extremity; and some authors have advised this event to be waited for before cutting the cord…” [p. 406]

29. Lusk WT The Science and Art of Midwifery. New York: D Appleton and Company, 1882,

"Infants which have had the benefit of late ligation of the cord are red, vigorous, and active, whereas those in which the cord is tied early are apt to be pale and apathetic."

"1. The cord should not be tied until the child has breathed vigorously a few times. When there is no occasion for haste, it is safer to wait until the pulsations of the cord have ceased altogether.
2. Late ligation is not dangerous to the child. The child receives into its system only the amount of blood required to supply the needs created by the opening up of the pulmonary circulation." [pp 214-215]

"As soon as the child is born, its eyes are wiped, any mucus in the air passages is removed, and it is placed in a convenient position between the patient's legs. The cord is tied as soon as it has stopped pulsating, and the infant is then removed." [p 350]

Obstetric teaching and concurrent research papers (until the 1930s)

"Immediately after its birth the child usually makes an inspiratory movement and then begins to cry. In such circumstances it should be placed between the patient's legs in such a manner to have the cord lax, and thus avoid traction upon it."

"Normally the cord should not be ligated until it has ceased to pulsate."

"I have always practiced late ligation of the cord and have seen no injurious effects following it, and therefore recommend its employment, unless some emergency arises which calls for earlier interference." [pp 342-343]

"The primary object of ligating or clamping the cord is, of course, to prevent hemorrhage; and while it is true that hemorrhage would rarely occur even were the cord not compressed, especially after the establishment of respiration, the fact is that hemorrhages have occurred and even with fatal
termination. In fifteen years I have had two cases of secondary hemorrhage from the cord which were all but fatal. It is likely, therefore, that some form of compression will always be regarded as necessary."

"I am rather inclined to disagree with those who advocate the use of a clamp. To me the ligation of the cord is one of the simples processes in obstetrics, and why complicate what is inherently simple? I quite agree that the cord should be tied as close as possible to the skin margin, but a piece of tape does that just as well as an instrument. The clamp crushes and macerates the tissues, and macerated tissue, as is well known, is prone to develop bacteria. This also holds true of the so-called milking of the cord, which frequently breaks down the outer surface and so favors the entrance of infection." [p740]

"… A compromise is usually adopted, in that the cord is not tied immediately after birth, nor does one wait till the expression of the placenta, but only until the cessation of pulsation in the cord, an average of five to ten minutes." [p419]

"I have always practiced late ligation of the cord and have seen no injurious effects following it, and therefore recommend its employment, unless some emergency arises which calls for earlier interference…"

“Tying the cord. – After waiting until the pulsation in the exposed umbilical cord has perceptibly weakened or disappeared, the child is severed from its mother. Until the cord is severed the child is still part of its mother and has no legal existence… During the four or eight minutes while waiting to tie the cord the child obtains from 40 to 60 gm. Of the reserve blood of the placenta – a fact that was first shown by Budin. The blood is pressed into the child by the uttering contractions, and part is aspirated by the expanding chest. This extra blood the child needs in its first days of life, and observation has shown that such children lose less in weight and are less subject to disease…” [p330]

"In most clinics the cord is not tied until pulsation has ceased. This is based on the accepted fact that the delay provides the infant with an additional average of 60 to 90 cc of blood. With premature infants or twins, most of which are usually below the weights of average single infants, this additional blood is a distinct advantage. In full-term infants of normal size the advantage is more theoretical than real." [p828]

What causes kernicterus (jaundice of subcortical brain nuclei)?

Before discovery of Rh factor sensitivity, Zimmerman and Yannet in 1933 summarized a large number of case reports of kernicterus. They concluded that kernicterus was caused by bilirubin staining of subcortical nuclei already injured by sepsis or oxygen deprivation. They further commented, "This differs in no way from the well known fact that any intravital dye will localize in zones of injury and will leave unstained tissues which are not damaged," [p757].

Fear of elevated bilirubin levels became a prime reason 40 years later for advocating immediate clamping of the umbilical cord at birth – to minimize placental transfusion.

More textbook instruction and research until mid-20th century

"After waiting until the pulsation in the exposed umbilical cord has perceptibly weakened or disappeared, the child is severed from its mother." "During the four or eight minutes while waiting to tie the cord the child obtains from 40 to 60 gm of the reserve blood of the placenta – a fact that was first shown by Budin. The blood is pressed into the child by the uterine contractions, and part is aspirated by the expanding chest. This extra blood the child needs in its first days of life, and observation has shown that such children lose less in weight and are less subject to disease. It is an error, on the other hand, to force the blood of the placenta into the child by stripping the cord toward the child. This overloads its blood vessels, causes icterus, melena, even apoplexy …" [p334]
"...If the infant has cried and has respired well for about five minutes, there is no advantage in leaving attached any longer to the placenta. Its pulmonary circulation has been opened up and the pulmonary vessels filled with blood …" [p128]

"If a cord be watched immediately after delivery the umbilical vessels can be seen to pulsate strongly throughout their entire length. In a varying length of time the pulsations cease in the more distal part and as this occurs the umbilical vessels collapse. This process of cessation of pulsation and collapse of the vessels proceeds toward the umbilicus until finally there is no pulsation even at the navel. The vessels are then entirely collapsed. If now the cord be tied and cut very little blood will escape from the placental end." [p 593]

"... The rather common practice of promptly clamping the cord at birth should be condemned. Of course, this will make it impossible to salvage placental blood for 'blood banks.' However, the collection of usable quantities of placental blood robs the newborn infant of blood which belongs to him and which he retrieves under natural conditions... Immediate clamping of the cord is comparable to submitting the infant to a rather severe hemorrhage." [1, p546]

"It is my custom to lift up the crying child, even before the cord is cut …"
"Its first cry remains an indelible memory on the mind of a mother; it is the song which carried her upon its wings to an ecstasy mere man seems quite unable to comprehend." [p95]

Questioning the practice of umbilical cord clamping

"There seems to be undue haste in severing the umbilical cord immediately after the second stage of labor...
...This practice involves many poorly understood changes in neonatal physiology, i.e., closure of the ductus arteriosus and ductus venosus..."
...Not long ago placental blood was recommended for transfusions. The volume so obtained was 125 to 250cc, providing immediate ligation of the cord was performed." [p728].

McCausland et al. (1949) sent a questionnaire to 1,900 diplomates of the American Board of Obstetrics and Gynecology to determine the usual practice at that time of handling the umbilical cord at birth. Replies from almost every state numbered 1,198 and revealed that 497 (41.5%) clamped the cord immediately after birth, 400 clamped the cord within five minutes after birth, and only 191 waited for pulsations to cease. However, 455 practiced stripping of the cord.

McCausland et al. recommended stripping of the cord, especially for premature infants, whom they described as not only underdeveloped, but often in varying degrees of shock.

"Whenever possible, clamping or ligating the umbilical cord should be deferred until its pulsations wane or, at least, for one or two minutes… …. There has been a tendency of late, for a number of reasons, to ignore this precept. In the first place the widespread use of analgesic drugs in labor has resulted in a number of infants whose respiratory efforts are sluggish at birth and whom the obstetrician wishes to turn over immediately to an assistant for aspiration of mucus, and if necessary, resuscitation. This readily leads to the habit of clamping all cords promptly." [pp397-398]

"Usually at the time of cesarean section as soon as the uterus is opened the operator delivers the infant as rapidly as is consistent with the infant's safety. The cord is clamped and cut immediately and the infant is handed to the waiting assistant...

...This is in marked contrast to the procedure during normal or vaginal delivery. At this time the cord is not clamped and severed until pulsations have ceased."

Continuing advice to wait for pulsations of the cord to cease

p 281 – "After waiting until the pulsation in the exposed cord has ceased, using dull scissors, the child is severed from its mother."

P 832 – "In attempting to account for the death of babies delivered by cesarean section, Landau and associates concluded that blood loss to the child incurred by immediate clamping of the cord amounted to 90 ml, a quantity of definite significance, especially in preterm infants. Improvement was noted in the condition of babies when drainage of blood from the placenta, after its removal, was facilitated by suspending it in a towel above the child for six to ten minutes or until the cord vessels collapsed." [pp280-282]

Landau DB et al. (1950) J. Pediat 36:421, April 1950. (see citation 142 above)

"After waiting until the pulsation in the exposed umbilical cord has ceased, the child is severed from its mother."

"DeMarsh, Alt, Windle and Hillis showed that those infants whose cords were not clamped until the placenta had separated from the uterus had on average 0.556 million more erythrocytes per cubic millimeter and 2.6 gm more hemoglobin per 100cc during the first week than those whose cords were clamped immediately. These authors maintained that early clamping of the umbilical cord is equivalent to submitting the child to a hemorrhage at birth. Wilson, Windle and Alt found that infants whose umbilical cords were clamped immediately after birth had a lower mean corpuscular hemoglobin at eight and ten months of age than those whose cords were clamped after the placenta began to descend into the vagina. It was suggested then that early clamping of the cord may lead to an iron deficiency during the first year of life."

"McCausland, Holmes and Schumann advise stripping the cord and placental blood into the infant because it is harmless if done gently and because term babies receive about 100cc of extra blood in this way. These authors claim that babies receiving this blood had higher erythrocyte counts, higher hemoglobin values, higher initial weights and less initial weight losses."

[p.251]

From Apgar onward (and concurrent research)

This was Apgar’s first paper on scoring the condition of infants during the minutes following birth. Apgar attributed failure of an infant to breathe right away at birth as the result of too much anesthesia given the mother during
childbirth, and she stated: “It is common for an infant to breathe once, but then become apneic for many minutes. A satisfactory cry is sometimes not established even when the infant leaves the delivery room.”

But should any newborn leave the delivery room, or his connection to his mother before breathing is established?

In a report five years later, Apgar et al. (1958) reported that they clamped the cord within the first minute after birth to preserve the “sterile field” and to transfer the baby to neonatal specialists. See citation 148 below.

Meanwhile, many obstetricians continued to follow the instruction of textbooks to wait for pulsations of the cord to cease.

Jäykkä proposed his theory that filling of the capillary bed surrounding the alveoli was the stimulus for initiating lung expansion and the first breath of the newborn.

"Immediately after the baby is delivered it should be held well below the level of the vulva for a few minutes or placed in a warm container the level of which is considerably below the mothers' buttocks (Fig 279). The purpose of keeping the baby at this level is to permit the blood in the placenta to get to the baby. Dieckmann and associates maintain that this procedure will add from 50 to 75 percent of the blood in the placenta and cord to the newborn child. If the placenta separates while waiting, expressing it from the uterus and holding it elevated for two or three minutes will accomplish the same purpose. The cord is cut after about three minutes or after it collapses. If the baby is in a special container, it is left in until after the cord is cut. As soon as possible after delivery any mucus in the air passages must be removed with a soft rubber bulb or a tracheal catheter.

Tying the Cord. After waiting until the pulsation in the exposed cord has ceased, using dull scissors, the child is severed from its mother. With a piece of linen bobbin, coarse silk, rubber band or any sterile strong string, the cord is ligated close to the cutaneous margin of the umbilicus, making sure that there is no umbilical hernia which might allow a loop of intestine to be caught in the grasp of the ligature. It is important to leave as little as possible of the cord to be cast off except when a baby has erythroblastosis…"

"DeMarsh, Alt, Windle, and Hillis showed that infants whose cords were not clamped until the placenta had separated from the uterus had an average of 0.56 million more erythrocytes per cubic millimeter and 2.6 gm. More hemoglobin per 100 ml. during the first week than those whose cords were
clamped immediately. These authors maintained that early clamping of the cord is equivalent to submitting the child to a hemorrhage at birth. Wilson, Windle and Alt found that infants whose umbilical cords were clamped immediately after birth had a lower mean corpuscular hemoglobin at 8 and 10 months of age than those whose cords were clamped after the placenta began to descend into the vagina. Thus early clamping of the cord may lead to an iron deficiency during the first year of life.

McCausland, Holmes and Schumann advise stripping the cord and placental blood into the infant because it is harmless if done gently and because term babies receive about 100 ml of extr blood in this way. Babies receiving this blood have higher erythrocyte counts, higher hemoglobin values, higher initial weights and less initial weight losses."

Blood flow is higher in the auditory system than anywhere else in the brain

This was the first report on blood flow measurements using a radioactive tracer. See the illustration (autoradiogram) from citation 88 above. That nuclei of the brainstem auditory pathway are the sites of highest blood flow came as a surprise, but also predicted the pattern of damage found by Ranck and Windle (1959) in monkeys subjected to asphyxia at birth.

Weight gain from placental transfusion

Measurements of weight change at birth following placental transfusion.

Human assisted delivery of thoroughbred foals and the convulsive foal syndrome

Mahaffey and Rossdale (responding to the article above by Gunther) described a convulsive syndrome affecting about 2 percent of thoroughbred foals delivered with human assistance.

"For a considerable time we have been greatly concerned with the possibility that the syndromes are associated with very early severance of the umbilical cord."

"It seems more than a coincidence that, as far as we can verify, the syndromes do not occur in thoroughbred foals which are born unattended in open paddocks in Australia, but are well known in France and Italy, where the cord is always severed by attendants within seconds of birth. Further, in Europe the disease seems to be unknown in breeds of horses other than thoroughbreds and these generally foal
without human 'interference.' Other domestic species which give birth to their young alone, and 'naturally,' are similarly unaffected.

Transfer of placental blood to the alveolar capillaries opens the lungs

Jäykkä provided evidence in support of the theory he proposed in 1954 that expansion of the lungs after birth results from fluid filling the capillary network surrounding the alveoli.

Most textbooks continue to promote placental transfusion

"The baby is held with its head downward for a few seconds while the cord is stripped from the introitus toward the infant several times. This adds 75 or more ml of blood, which would otherwise be discarded with the placenta, to the infant's vascular system." [p337]

"The blood in the fetal circulation is distributed between the vessels in the infant's body and those in the placenta …"

"...At the end of the second trimester about half the total blood is in the placenta, but as the baby grows larger relatively more is contained in the infant itself. The blood volume of the newly born baby is only about 250 ml. Consequently as much as possible must be preserved. If clamping and ligation of the cord are delayed for several minutes after the baby is born, as much as 100 ml of blood will be transferred from the placenta to the baby. The same result can be obtained by stripping the cord from the vulva toward the infant repeatedly until no more blood enters the vessels from the placental end." [p373]

Apgar et al. promote clamping of the cord within one minute after birth

In 1958, Apgar (and her colleagues) wrote that scoring at one minute was done because this represented the time of most severe depression:

"In the Sloane Hospital the cord has been cut by this time, and the infant is in the hands of an individual other than the obstetrician. In many hospitals, such is not the case. Those obstetricians who practice slow delivery and delayed clamping of the cord until pulsations of the umbilical artery cease still have the infant in the sterile field. However, if the obstetrician is reminded of the passage of time by another observer, he may assign a score even though the cord is still attached," [p1987]
Thus the Apgar score devised over 50 years ago reflected the perceived need to remove the newborn from the "sterile field" for repair of the episiotomy, manage delivery of the placenta, and to give the infant to neonatal specialists, often for resuscitation.

Apgar et al. also wrote in the 1958 paper:
“All infants with a score of 8, 9, or 10 are vigorous and have breathed within seconds of delivery. In this group, scores of 8 or 9 reflect a lower score for color. The infants with a score of 4 or less are blue and limp and have failed to establish respiration by one minute.” [p1987]

The Apgar score is all about how well a newborn establishes respiration. In contrast to the opinion expressed by White in 1773, Apgar and her colleagues expected that the transition from fetal to neonatal respiration should take place within seconds of delivery.

Apgar et al. (1958) noted that many obstetricians at that time still practiced "slow delivery," waiting for pulsations of the cord to cease, and they suggested that a score could still be assigned, obtaining the heart-rate of the infant by palpating the umbilical cord.

More on the convulsive foal syndrome

"Variable degrees of traction are usually practised by attendants when the head and forelegs are emerging from the vulva. The amnion is prematurely ruptured by hand, the legs are grasped and a pull is exerted upon them... the umbilical cord is ruptured with such haste that the newborn foal (weighing 100-120 lb.) is deprived of an average of 1020 ml. of blood and often 1500 ml. -- probably about 30% of its potential blood-volume.

Under normal conditions a mare usually rests for period of up to half an hour after parturition, during which the foal also is inactive. The cord remains intact and is not broken until the mare (sometimes the foal) attempts to get to its feet. Meanwhile virtually all the blood in the placenta has passed back into the circulation of the foal, and it is difficult to collect even 50 ml. of blood when the cord ruptures at this stage."

Respiratory distress and continuing pulsation of the umbilical cord stump

"More recent experience with distressed infants revealed that certain of these infants show disturbances in the closure of umbilical vessels after birth.
…The umbilical arteries normally cease to pulsate within a short period after the infant has been delivered."
While ligation of the umbilical cord immediately after birth is a tradition in modern obstetrics, the danger of hemorrhage from cords left unligated is not great" [p131]

"Forty-one infants manifested prolonged pulsation of the cord after delivery. The mean duration of cord pulsation was 5 hours, with a range of from 40 minutes to 13 hours after birth." [1, p132]

"Seventy-three per cent of the infants had either fetal distress prior to delivery or difficulty with the onset of respiration on delivery." [p145]

Experiments with monkeys subjected to asphyxia at birth

This was the first report of symmetrical bilateral brainstem damage found in monkeys subjected to experimental asphyxia at birth, and that this pattern of damage bore a close resemblance to that seen in kernicterus:

"The human neuropathologic entity most closely resembling the effects of asphyxia neonatorum in the monkey is kernicterus. There are similarities in the distribution and type of nerve cell changes in both conditions. Major differences between the findings in the monkey and those in human infants with kernicterus are absence in the former of the usual history of erythroblastosis fetalis, lack of clinical jaundice, lack of pigment in the lesions, frequent presence of neuroglia cell damage, and presence of marked astrocytic and phagocytic reactions" [p153]

Apgar’s colleague on respiratory distress and delay in onset of respiration

James (1959) was co-author with Apgar in 1958 of the paper in which they explained that at the Sloane Hospital (at Columbia University) the umbilical cord was cut within the first minute after birth to preserve the "sterile field," and that all infants with Apgar scores of 8, 9, or 10 had breathed within seconds of delivery. In this paper on respiratory distress a year later, he cites delay in onset of respiration at birth as the primary etiologic factor:

"A review of the obstetrical histories in infants who show a rising respiratory rate has indicated that delayed respiration at birth, even for 2 minutes, seemed to affect markedly both the incidence of abnormal breathing and subsequent." [p1089]

More on respiratory distress syndrome

Reports of respiratory distress syndrome appear to have increased with more and more widespread clamping of the umbilical cord sooner and sooner after birth.

Moss et al. pointed out that pulsations in the cord become progressively weaker and finally cease after the transition from placental to pulmonary respiration is complete. This represents a gradual change-over with only minor alterations in systemic blood flow, but with sudden occlusion of the cord before expansion of the alveolar vascular bed, systemic pressure may cause rupture of capillaries in the lungs, brain, and other organs. They concluded their paper with the following comment:

"The carefree manner in which the newly born infant is 'disconnected' from his 'oxygenator' without any assurance that respirations will ever begin is in sharp contrast to the meticulous care with which the thoracic surgeon separaes his patient from the pump-oxygenator." [p50]

Asphyxia, not high levels of bilirubin, causes damage in the brain

Lucey et al induced hyperbilirurinemia in fourteen newborn monkeys by injecting a solution of bilirubin into the bloodstream every six hours. Bilirubin levels of 20 to 35 mg were maintained for up to 96 hours. Then, "Six healthy full-term monkeys were asphyxiated at birth. A rubber bag filled with saline solution was placed over the fetal head as it was delivered from the uterus before the first breath. The umbilical cord was then clamped and asphyxiation carried out for 10 or 12 minutes" [p45]. Hyperbilirubinemia was then induced in the asphyxiated monkeys as in the fourteen control animals.

Lucey et al described the monkeys made hyperbilirubinemic as showing marked yellow coloration of skin and mucous membranes. Those not asphyxiated became slightly lethargic but none developed signs of neurological impairment. Monkeys subjected to asphyxia before induction of hyperbilirubinemia developed tremors, seizures, and prolonged periods of opisthotonus (a postural state with arched back and neck).

"Hyperbilirubinemia alone did not result in selective staining of nuclei in the brain, such as is associated with human kernicterus … the brains had a diffuse, faint to moderate, yellow color, but no extravascular bilirubin was seen" [p50].

Bilirubin is not directly toxic to the brain. Asphyxia appears to break down the blood-brain barrier, which then allows bilirubin to get into neural cells. As Zimmerman and Yannet noted in 1933, “any intravital dye will localize in zones of injury and will leave unstained tissues which are not damaged.” [132, p757]
Teaching continues, to wait for pulsations of the cord to cease

"After pulsation in the exposed cord has ceased, using dull scissors, the child is separated from its mother." [p376]

"After delivering the child, the obstetrician suspends it by its feet … During this time the fluid within the tracheobronchial tree may be expelled by gravity. Most infants take their first extrauterine gasp at this time, and it is well to have the trachea clear."

"If the obstetrician waits until the cord stops pulsating, the child receives a considerable amount of blood (up to 100 ml). This procedure is harmless to the normal infant and may be beneficial. However, the extra blood volume from the placenta may be detrimental in some pathological conditions of the infant. The most notable of these are maternal-fetal blood group incompatibilities, anomalies of the infant cardiovascular system, or severe fetal asphyxia."

"In normal full-term deliveries, the cord is clamped with two hematostats as soon as the cord stops pulsating." [p202]

"…The infant usually cries immediately, and the lungs become expanded; about this time the pulsations in the umbilical cord begin to diminish. The physician usually will defer clamping the cord until this occurs, or for a minute or so if practicable, because of the marked benefit of the additional blood to the infant." [p268]

“Emergency delivery… There is no hurry to cut the cord, so this should be delayed until proper equipment is available. It is a good plan to clamp the cord after pulsations cease (but not imperative at the moment) and to wait for the physician to cut the cord after he arrives." [p288]

"Iatrogenic interruption of the placental circulation at birth has, in most cases, become an automatic procedure with little or no regard for the physiologic alterations evoked or for their subsequent effect upon the fetus." [p109]

"In infants delivered by cesarean section, hemoglobin, hematocrit value, and blood pressure have frequently been found to be lower than in infants delivered per vaginum … due to a loss of blood into the placenta, since the uterus is not contracting."

"Asphyxiated newborn monkeys resuscitated before the last gasp show little or no cerebral damage. On the other hand prolongation of asphyxia for as short a period as four minutes after the last gasp is accompanied by widespread tissue damage and abnormal behavior in the surviving animals. Thus for the newborn monkey the 'safe' period of anoxia is short if functional integrity is to be maintained." [pp220-221]

Disruption of brain maturation in monkeys asphyxiated at birth

Abstract: “Brain damage occurring from 10 months to 8 years 9 months after neonatal asphyxiation for 11.5-17 min was assessed histologically in 12 rhesus monkeys. Comparison was made with brains of ten monkeys asphyxiated for brief periods or living shorter times and with those of five nonasphyxiated controls. Very slight damage occurred after 6-7 min of asphyxia; major destruction of relay nuclei in afferent input systems and parts of the basal ganglia, after 11.5-17 min. In the course of time, beginning about 10 months after birth, secondary transneuronal degeneration became evident. This was most clearly seen in the parts of the cerebral cortex which had received projections from the thalamic nuclei destroyed during the asphyxia; also in other thalamic nuclei and the brain-stem reticular formation. Gradual improvement in physical status and in behavioral responses to environment occurred while brain structure deteriorated."

Bilirubin and other uncertainties

Is it safe to allow a placental transfusion? By the 1970s the practice of clamping the cord was so widespread, at least in obstetric practice associated with academic institutions, that whether a placental transfusion should be
allowed became a major topic for research. Thus the opening comment of this highly influential report states:

"In full-term infants placental transfusion increases the blood volume of the newborn by 40% to 60% within 5 minutes of birth. Most of the excess blood volume is eliminated within 4 hours by an extravasation of plasma from the circulation. For the remainder of the neonatal period, such infants retain a 50% larger red cell volume dispersed through a slightly enlarged blood volume, with higher hematocrit values than are found in infants whose umbilical cords are clamped immediately at birth." [p406]

"If delayed cord clamping is adopted as a means to reduce the incidence of respiratory distress syndrome in premature births, there will be accompanying augmentation of hyperbilirubinemia to deal with." [p418]

This paper, with its single focus on bilirubin danger, has been one of the most influential in adopting immediate clamping of the umbilical cord at birth as a standard protocol.

Partial hypoxia found as the cause of cerebral palsy

In more experiments with monkeys, Myers confirmed that the symmetric bilateral pattern of brainstem damage is caused by eight or more minutes of total oxygen cutoff at birth, and that prolonged partial hypoxia in utero results in the pattern of cortical damage associated with cerebral palsy.

Neuropathology of foals born with human assistance found similar to that in monkeys

Palmer and Rossdale found brain damage in thoroughbred foals delivered with human assistance similar to that found in monkeys subjected to asphyxia at birth.

Continuing fear of elevated bilirubin

"The optimal time for clamping (or tying) the cord is not known for certain. Late clamping of the cord results in an additional volume of blood reaching the infant. This is harmful in premature and erythroblastotic infants.

In the asphyxiated infant, early clamping allows rapid transfer of the child for resuscitation purposes. In other patients, the cord is clamped when pulsations cease." [p395]

In this paper Saigal and Usher (1977) described "symptomatic neonatal plethora" in 8 premature and 3 full-term infants with the suggestion that these conditions were caused by "large placental transfusions associated with delayed clamping of the umbilical cord" [p62]. Saigal and Usher stated implications of their findings as follows.

"After many years of controversy, the question of when to clamp the umbilical cord seems to be resolving towards a middle course. Excessive delay (more than 2 min) in cord clamping produces hyperbilirubinemia and sometimes symptomatic hypervolemia or polycythemia. Immediate cord clamping in premature infants tends to increase mortality from respiratory distress syndrome. It seems advisable, therefore, to delay cord clamping for 1 to 1 1/2 min in premature infants, with less delay in full-term infants." [2, p70]

Clamping the cord soon after delivery had become the norm. There seemed to be no memory of the traditional teaching of textbooks, or research from less than 20 years earlier [3]. Treatment of mothers in premature labor with betamethasone, and neonatal use of surfactant were being used to prevent respiratory distress syndrome and hyaline membrane disease of the lungs. The association of lung pathology with clamping of the umbilical cord had become irrelevant, and placental transfusion was now regarded as a potential hazard.

Breakdown of the blood/brain barrier allows bilirubin or any other dye into the brain

Lou et al. (1977) addressed what appeared to be the primary concern over "delayed" cord clamping allowing placental transfusion [1]. Citing the paper by Lucey et al. (1964) [2] they stated:

"Asphyxiated infants are especially susceptible to kernicterus, even if their plasma-bilirubin levels are low.' Furthermore, it is very difficult to produce clinical and pathological signs of kernicterus by injection of bilirubin intravenously in normal infant monkeys, while kernicterus was readily produced in previously asphyxiated monkeys." [1, p1062]

Mossakowski et al. (1968) used Evans blue dye to investigate the blood-brain barrier in newborn monkeys subjected to asphyxia by clamping the umbilical cord and obstructing the airway [69]. Lou et al. also used Evans blue dye in fetal lambs subjected to oxygen insufficiency for 1-2 hours:

"The fetuses were asphyxiated by partially inflating a cuff around the umbilical cord. Asphyxia developed over a period of 1-2 h (pH about 690)." [1, p1062]

The initial response of the fetal lambs was a slowing of heart rate and increased blood pressure during the first half- to one-hour period of umbilical
cord blood flow restriction. After that the blood pressure declined and remained low. Twinning is frequent in lambs, and Lou et al. used the twin as a control for the fate of Evans blue dye, and reported:

"We have found, in experimental asphyxia lasting 1-2 h, a striking discoloration throughout cortex and basal ganglia after intravenous injection of 3 ml/kg of a 2% solution of Evans blue in eight non-exteriorised fetal lambs, in contrast to the uncoloured brain tissue in non-asphyxiated twins acting as controls." [1, p1062]

In conclusion they commented: "We suggest that the breakdown of the fetal blood/brain barrier to albumin is due to a combination of the initial moderate hypertension and severe vasodilation during asphyxia. The permeability of the blood/brain barrier to albumin in asphyxiated babies would facilitate the transport of bilirubin from plasma to neurones and thus explain the increased susceptibility to kernicterus." [1, p1063]

If a baby does not breathe right away at birth, should the umbilical cord be clamped off right away? Respiratory depression in infants born alive is a current concern and topic for research [4, 5]. If an infant is born alive, it has been receiving oxygen through the umbilical cord up to the time of birth. Shouldn't that lifeline be left intact until the lungs become functional?

Breakdown of the blood brain barrier by asphyxia has been shown to allow bilirubin and other substances in the circulation to enter the brain. High levels of bilirubin won't affect the brain if the blood-brain barrier has not been breached. Immediate clamping has been too long defended as a means to avoid circulatory overload and hyperbilirubinemia.

Lou et al. (1979) reported results of more research on the vulnerability of the blood-brain barrier to circulatory insufficiency in fetal lambs:

More textbook teachings into the 1980s

"The umbilical cord should be tied up after its vessels stop pulsating, which occurs in 2-3 min following the delivery of the infant. In the course of a few minutes that the umbilical cord pulsates, from 50 to 100 ml of the blood is delivered into the vascular system of the foetus from the placenta. As soon as the pulsation discontinues, the cord should be cut off and tied up in aseptic conditions." [p156]

“The optimum time of clamping is 30-60 seconds after birth. This will provide some 80 ml of extra blood to the baby. Excess blood volume in the baby can be a disadvantage, producing polycythemia and hyperviscosity, with such attendant problems as respiratory distress, heart failure, jaundice, convulsions and apathy.” [p381]

"Apgar scores are recorded at 1 minute and again at 5 minutes, timing the observations accurately... Also the time to first breath and time to the establishment of regular respirations are recorded.

… Permanent cord clamps or ligatures (Figure 26.27) or special bands are applied to the umbilical cord as soon as possible after birth..." [p470]

"The optimal time for clamping (or tying) the cord is not known for certain. Late clamping of the cord results in an additional volume of blood reaching the infant. This may result in hyperviscosity, jaundice and cardiorespiratory, neurological and renal problems. The extra blood specifically aggravates jaundice in premature infants and in those with erythroblastosis, so early clamping of the cord is advised in such infants." [p546]

"Q: What is the significance of continued pulsation of the arteries in the umbilical cord at birth?

A: It means that respiration has not commenced. The physiological stimulus causing closure of umbilical arteries (and ductus arteriosus) is an increase in oxygen saturation of the blood which occurs when the lungs expand with air." [p710]

"Routine practices concerning the time for clamping the umbilical cord vary. If the child's condition is satisfactory cord clamping and severing can be delayed until pulsation has stopped and the infant is position at or below the level of the mother. The additional blood transfused from the placenta can be as much as 100 ml. The benefits of this are not fully evaluated but the additional volume may be harmful in preterm infants. Early clamping facilitates prompt resuscitation, if required, and transfer to the mother's arms..." [pp734-5]

"... with present information it seems reasonable to avoid the extremes of immediate and of very late clamping. The first 30 to 60 seconds after delivery are well spent in suctioning the airway ... The normal newborn invariably cries during this interval ..." [p258]

Correction in progress – but why must we wait for new experimental evidence?

102. Hutchon DJ. Epidemiology of preterm birth: delayed cord clamping used to be taught and practised. BMJ. 2004 Nov 27;329(7477):1287; author reply 1287.

116. Hutchon DJ. Delayed cord clamping may also be beneficial in rich settings. BMJ. 2006 Nov 18;333(7577):1073.
129. Wiberg N, Källén K, Olofsson P. Delayed umbilical cord clamping at birth has effects on arterial and venous blood gases and lactate concentrations. BJOG. 2008 May;115(6):697-703.

Environmental conditions associated with autism

Prenatal exposure to alcohol and/or other drugs

Infectious encephalitis

Lead poisoning

Seizure disorder/ neurologic damage
Perinatal complications

Genetic/metabolic conditions associated with autism

Neurolipidosis

Tuberous sclerosis

Neurofibromatosis

Phenylketonuria (PKU)

Fragile X syndrome

Chromosomal disorders
Leber's Congenital Amaurosis

Adenylosuccinate Lyase Defect

Lactic Acidosis

Krebs Cycle (aerobic metabolism) Defects

Mitochondrial Disorders

Measures of blood flow and metabolism
Brain System Impairments in Autism

The vigilence center of the brain

An information seeking system

Maturation of language circuits of the cerebral cortex

Language development and deafness

Auditory processing problems in autism

Vulnerability of the auditory system to disruption of aerobic metabolism

Wernicke’s encephalopathy

Beriberi, and discovery of thiamine and other vitamin deficiencies

Research on thiamine deficiency

Research on Wernicke’s encephalopathy (or Gayet-Wernicke encephalopathy)

Pyrithiamine, poison for the site of action of thiamine

Wernicke-like brain damage and aerobic poisons
Brain System Impairments in Autism

Wernicke-like brain damage caused by anoxia

Autism, a form of Wernicke’s Encephalopathy, or kernicterus?

Loss of speech comprehension following injury of the inferior colliculi

Injury during traumatic birth

A contrast agent for MRI that shows regions of blood-brain-barrier compromise

Immunization schedules and concerns
328. A timeline of vaccinations from the eighteenth century to the present day: http://www.askbaby.com/timeline-vaccinations.htm
Thiamine deficient baby milk in Israel (autistic features in some of the affected children?)